Origin and function of short-latency inputs to the neural substrates underlying the acoustic startle reflex

نویسندگان

  • Ricardo Gómez-Nieto
  • José de Anchieta C. Horta-Júnior
  • Orlando Castellano
  • Lymarie Millian-Morell
  • Maria E. Rubio
  • Dolores E. López
چکیده

The acoustic startle reflex (ASR) is a survival mechanism of alarm, which rapidly alerts the organism to a sudden loud auditory stimulus. In rats, the primary ASR circuit encompasses three serially connected structures: cochlear root neurons (CRNs), neurons in the caudal pontine reticular nucleus (PnC), and motoneurons in the medulla and spinal cord. It is well-established that both CRNs and PnC neurons receive short-latency auditory inputs to mediate the ASR. Here, we investigated the anatomical origin and functional role of these inputs using a multidisciplinary approach that combines morphological, electrophysiological and behavioral techniques. Anterograde tracer injections into the cochlea suggest that CRNs somata and dendrites receive inputs depending, respectively, on their basal or apical cochlear origin. Confocal colocalization experiments demonstrated that these cochlear inputs are immunopositive for the vesicular glutamate transporter 1 (VGLUT1). Using extracellular recordings in vivo followed by subsequent tracer injections, we investigated the response of PnC neurons after contra-, ipsi-, and bilateral acoustic stimulation and identified the source of their auditory afferents. Our results showed that the binaural firing rate of PnC neurons was higher than the monaural, exhibiting higher spike discharges with contralateral than ipsilateral acoustic stimulations. Our histological analysis confirmed the CRNs as the principal source of short-latency acoustic inputs, and indicated that other areas of the cochlear nucleus complex are not likely to innervate PnC. Behaviorally, we observed a strong reduction of ASR amplitude in monaural earplugged rats that corresponds with the binaural summation process shown in our electrophysiological findings. Our study contributes to understand better the role of neuronal mechanisms in auditory alerting behaviors and provides strong evidence that the CRNs-PnC pathway mediates fast neurotransmission and binaural summation of the ASR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

کاربرد فیلم در القای هیجانهای خوشایند و ناخوشایند و تغییر بازتاب از جا پریدن

  Objective : the studies indicate that the "eye-blink" components of "acoustic startle reflex" can be modulated through emotionally slide stimuli. Pleasant stimulants reduce eye-blink amplitude, whereas unpleasant stimulants enhance them. Method: the present study examines the modulation of the acoustic startle reflexes through a short film clips (2-min), classified as pleasant, unpleasant and...

متن کامل

A primary acoustic startle circuit: lesion and stimulation studies.

The latency of the acoustic startle reflex in the rat is 8 msec, measured from tone onset to the beginning of the electromyographic response in the hindleg. This extremely short latency indicates that only a few synapses could be involved in some primary acoustic startle circuit. Acoustic startle is being used as a model system for studying habituation, sensitization, prepulse inhibition, class...

متن کامل

Impaired prepulse inhibition of acoustic and tactile startle response in patients with Huntington's disease.

The corpus striatum serves a critical function in inhibiting involuntary, intrusive movements. Striatal degeneration in Huntington's disease results in a loss of motor inhibition, manifested by abnormal involuntary choreiform movements. Sensorimotor inhibition, or "gating", can be measured in humans using the startle reflex: the startle reflex is normally inhibited when the startling stimulus i...

متن کامل

GABAergic neural activity involved in salicylate-induced auditory cortex gain enhancement.

Although high doses of sodium salicylate impair cochlear function, it paradoxically enhances sound-evoked activity in the auditory cortex (AC) and augments acoustic startle reflex responses, neural and behavioral metrics associated with hyperexcitability and hyperacusis. To explore the neural mechanisms underlying salicylate (SS)-induced hyperexcitability and "increased central gain," we examin...

متن کامل

The effect of posture on the normal and pathological auditory startle reflex.

The effect of posture on the EMG pattern of the normal auditory startle reflex was investigated. The startle response to an unexpected auditory tone was studied in eleven normal subjects when standing, and in six normal subjects when sitting relaxed or tonically plantar flexing both feet. Reflex EMG activity was recorded in the tibialis anterior and soleus about twice as frequently when standin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014